
Bypassing Android isolation with fuel gauges:
new risks with advanced power ICs

Vincent Giraud David Naccache
DIÉNS, ÉNS, CNRS, PSL University, Paris, France Ingenico

One of the boards in the Nintendo Switch. This device contains a fuel gauge, the

MAX17050, to which we provide a magnified view.

The challenge of managing batteries

Lithium batteries offer many advantages for embedded devices.

However, predicting and analyzing their behavior is hard, as it

depends on many factors: the voltage at their terminals, the

operating temperature, their age, the lithium quality, the

extracted load since the last full charge...

To facilitate power management, many designers incorporate a

fuel gauge in their embedded devices. It is an integrated circuit

dedicated to analyzing and monitoring various metrics related to

the energy source. They include the instantaneous current going in

or out of the battery, along with the other aforementioned metrics.

However, an overlooked aspect of these components that is

worthy of interest in the field of security is their remarkable

accuracy. Can it pose a threat?

Fuel
gauge

System

Serial link

Battery

Typical integration of a fuel gauge in an embedded system. It is placed between

the system and the power sources, so that all consumed current have to flow

through it.

Integration in Android

While the Android security policy is clear and explicit

regarding interactions between applications 1 , it is less

the case concerning interactions with the hardware 2 ,

as it can vary over the type of requested resource, the

type of access, or the operating system version, for

example. Smartphones and tablets constructors can

also further complicate their moderation rules.

We discovered that despite the potential hazards

implied by fuel gauges, no moderation or security policy

enforcement can be found in any of the abstraction

layer in Android, especially in the Java framework and at

the kernel level. The former is usually where all of these

considerations are implemented, the latter features

SELinux, a security module perfectly able to restrict

abuses on hardware resources.

Linux kernel and drivers

Native libraries

Zygote, ART

Java framework

Application
1

Application
2

Application
3

1

2

Layered representation of the Android operating system. To access hardware

resources, requests from applications at the top must be relayed by all of the

underlying components.

Identified risks

Given the lack of security policy concerning fuel gauge accesses, we

identified three risks:

1. A privacy risk: a malicious application could monitor the

consumption all day long without the user’s consent, and log the

activity. A lot of sensitive information could be deduced.

2. The risk of creating a hidden communication channel on the

platform: one malicious application that has exclusive access to

some data could secretly get it out by voluntarily causing more

power consumption and modulating a signal on the real-time

current measurement. Another application would simply have to

read this signal by accessing the fuel gauge.

3. The risk of having a legitimate application being spied on by a

malicious one, to get sensitive data. In these works, we focused on

targeting a process ongoing at human speed: a PIN code entry.

Proof of concept: PIN code entry spying

Are fuel gauges precise enough and are their refresh rates high enough to

spy a PIN code entry? To verify it, we developed an application probing

these integrated circuits, and tested it on smartphones in Google’s Nexus

and Pixel lines. We confirmed that:

their refresh rates are high enough to spy on processes at human

speed, like a PIN code entry. However, they are too low to target any

software-only process, including cryptographic implementations. This

limitation is not induced by Android, which does not cap the request

frequency, but by the refresh rates of the physical registers in the

fuel gauges.

they are precise enough to detect a touch on smartphones’ screen.

The overconsumption happening during a touch can have two

reasons: the physical functioning of the touchscreen, and the

software processing of the components responsible for the

management of the input, notably the corresponding driver.

By observing the real-time current consumption trace obtained during a

PIN code entry, we can notice downward peaks corresponding to key

presses, without needing to do signal analysis. Attacks on these

processes are thus possible. The platform does not need to be rooted:

Android, in its default configuration, provides enough permissions for a

malicious application to be able to spy.

This capture shows the real-time current consumption

trace obtained by our spying application during a screen

touch, happening between sample number 12500 and

sample number 22500. We can see a higher variance

toward the bottom during this period: samples are

negative because the current is flowing out of the battery.

This current consumption trace has been obtained during a PIN code entry. We

can clearly see five peaks, each corresponding to a key press: the four numbers

of the passcode, and the validation key.

Capture of a victim application displaying Android’s native

keypad. As the added arrows show, the tree of the most likely

PIN codes starts from the validation key which is at a known

location, and spawns new branches for each new possibility

when approaching the beginning of the entry.

Example use and output of the script deploying the tree according to four given temporal

delays. The program has been configured with the geometrical data describing the shape of

Android’s native keyboard.

Attacking

We consider the four delays between the five key presses. An important

fact we rely on is that the validation key the user needs to press in order

to confirm his code is at a fixed, known location on the screen. Starting

from the end, we can develop a tree by considering, at each step, the

most likely previous key depending on the corresponding delay. Each

branch of the resulting tree is one of the most likely PIN codes.

While this method provides good results, once the delays between the

key presses are recovered, other techniques found in the state of the art

can also be applied, such as Markov chains, artificial intelligence...

Defending

Removing this attack vector is easy if we control the system: patching

Android completely suppresses this risk. In particular, the

BatteryManager system service can be rectified very simply with just a

few lines of code.

However, protecting an application is a difficult task if we cannot modify

a system which we know is compromised. We are investigating solutions

based on jamming, and fake sensitive signal simulation.

In the particular case of a PIN code entry, using a randomized keypad is a

satisfying solution. However, it will break user accessibility, and will not

protect against other power-related risks.

The authors would like to thank Guillaume Bouffard from the National Cybersecurity Agency of France (ANSSI) for his support throughout these works.


