
Power analysis pushed too far:
breaking Android-based isolation with fuel gauges

Vincent Giraud1,2 and David Naccache1,2

1 DIENS, École Normale Supérieure, Université PSL, CNRS, Paris, France
2 Ingenico, Suresnes, France
firstname.lastname@ens.fr

Abstract. Efficient power management is critical for embedded devices,
both for extending their lifetime and ensuring safety. However, this can be
a challenging task due to the unpredictability of the batteries commonly
used in such devices. To address this issue, dedicated Integrated Circuits
(ICs) known as "fuel gauges" are often employed outside of the System-
on-Chip (SoC). These devices provide various metrics about the available
energy source and are highly accurate. However, their precision can also
be exploited by malicious actors to compromise platform confidentiality
if the Operating System (OS) fails to intervene. Depending on the fuel
gauge and OS configuration, several attack scenarios are possible. In this
article, we focus on Android and demonstrate how it is possible to bypass
application isolation to recover Personal Identification Numbers (PINs)
entered in other processes.

Keywords: Fuel gauge · Embedded system · Confidentiality.

1 Introduction

Lithium-based batteries have been the go-to choice for embedded devices for
several decades. These batteries offer high energy density and low self-discharge,
and do not suffer from memory effect. However, predicting and analyzing their
behavior can be a challenging task. The voltage at their poles is not directly
proportional to the remaining energy level, and their discharge is affected by
various factors such as the platform’s dynamic consumption, temperature, age,
and total capacity. Consequently, managing power on an embedded system is a
complex process. Furthermore, end-user expectations have evolved significantly
in recent years. Knowing a battery’s charge level only up to the nearest quarter is
no longer acceptable, as users now expect to have an estimate up to the nearest
percentage.

Managing power consumption on embedded devices can be a challenging
responsibility, requiring a significant investment of time and expertise. One ap-
proach is to implement the necessary operations and modeling at the OS level,
or at least execute them on the central processor. However, this approach can
impose an additional burden on an already heavily utilized component. Further-
more, obtaining reliable measurements from this environment, such as capturing

2 V. Giraud and D. Naccache

accurate temperature readings, can be complicated. This is because the processor
itself can significantly influence the readings, rather than the battery. Addition-
ally, it becomes more difficult to estimate the quality and age of the power source
with this implementation. Managing multiple distinct batteries can exacerbate
these challenges further.

To facilitate power management in embedded devices, many designers in-
corporate fuel gauges, which are integrated circuits dedicated to analyzing and
monitoring various metrics related to the energy source. These metrics include
the voltage of the source, the current drawn from or injected into it, and the
temperature, among others. However, an overlooked aspect of these components
that is worthy of interest in the field of security is their remarkable accuracy [3].
This accuracy allows fuel gauges to produce precise estimations of the battery’s
age, charge, and health, which are among their flagship features.

Fuel
gauge

System

Serial link

Battery

Fig. 1: Diagram representing a typical fuel gauge implementation in an embedded
system.

The use of integrated fuel gauges in embedded devices frees device designers
and OS developers from the responsibility of managing the power source. Fuel
gauges provide more accurate measurements because they are located closer to
the battery and handle the necessary calculations and algorithms. The software
running on the SoC only needs to request the desired metrics or data, which
are communicated through a serial link connecting the fuel gauge and the main
system, as illustrated in Figure 1. This communication channel typically corre-
sponds to an I2C communication bus, which is managed by a driver residing in
the kernel space. This delegation of responsibility is common in smartphones,
tablets, and portable video game consoles, particularly in high-end products.
However, since fuel gauges can be expensive, it should be noted that less accu-

Breaking Android-based isolation with fuel gauges 3

rate measurements and estimates are often used in devices aimed at more modest
price ranges.

Fuel gauge presence Determining whether a phone or tablet is equipped with
a fuel gauge before purchase can be a challenging task, as manufacturers do
not indicate the presence or absence of this component on their data sheets or
documentation. However, after purchasing the device, one can visually inspect
its printed circuit to confirm the presence of a fuel gauge. In the case of an
Android device, it is possible to determine the presence of a fuel gauge in the
system without necessarily having root access by probing the equipment related
to power through a terminal.

Listing 1.1: Terminal output when determining the power-related equipments in
the Pixel 6 smartphone.
$ ls −a /sys/class/power_supply
battery
dc
gcpm
gcpm_pps
main−charger
maxfg
pca9468−mains
tcpm−source−psy−i2c−max77759tcpc
usb
wireless

Upon inspection of the resulting list, fuel gauges are often found in Google’s
Nexus and Pixel lines, particularly in the Pixel 6, as illustrated in listing 1.1.
While the number of listed elements may be substantial, the nomenclature can
assist in identifying the IC of interest. In this specific case, the maxfg device
draws our attention: max signifies the Maxim Integrated brand, while fg denotes
the fuel gauge.

1.1 Software context in Android

The Android OS is based on a Linux kernel, with a user environment that is
radically different from the ones usually found in conventional computer distri-
butions. A decisive choice in the design of Android was to assign each application
a different Unix user, thus allowing the system to benefit from the isolation tra-
ditionally imposed between processes. The SELinux module is deployed from
version 4.3 to reinforce this policy. Outside the kernel space, on top of a mini-
mal layer of libraries and native executables, Zygote acts as a model process for

4 V. Giraud and D. Naccache

instantiating applications: at each such request, it forks itself, and changes the
user associated with the child process to respect the paradigm mentioned. The
abstraction layers present on an Android system are illustrated in a simplified
way in Figure 2.

Linux kernel and drivers

Native libraries

Zygote, ART

Java framework

Application
1

Application
2

Application
3

1

2

Fig. 2: Simplified view of the abstraction model in Android systems. The first,
green arrow represents horizontal accesses. The second, red arrow represents
vertical accesses.

At the application level, interactions between applications in Android are
limited, and they are not possible directly. Instead, communications or calls
between applications must be negotiated via Binder, the inter-process communi-
cation manager specific to Android3. This component takes care of calls between
services and activities, which is a cardinal aspect of the Android operating sys-
tem. While horizontal accesses, which refer to interactions between applications,
are dictated by explicit rules, this is less the case for vertical interactions, where
an application requires hardware resources provided by the platform. In the case
of smartphones and tablets, these resources may include components such as a
light meter, an accelerometer, a gyroscope, a microphone, and one or more cam-
eras. Access to these features is regulated according to the Android version and
the platform manufacturer, and it depends on the nature of the resource and
the type of interaction desired. From an application’s perspective, these permis-
sions are often discovered at runtime. Access to energy monitoring is regulated

3 Binder is not documented, but it can be found in Android’s common ker-
nel tree’s drivers: https://android.googlesource.com/kernel/common/+/refs/
heads/android12-5.10/drivers/android/binder.c

Breaking Android-based isolation with fuel gauges 5

according to the same logic. The possibility of a risk resting on it has prompted
us to explore this area further.

1.2 Key issues and contribution

Due to their possible presence in an essential brick of embedded systems, it is
advisable to perform a risk analysis concerning fuel gauges. The state of the
art of security assessment around these integrated circuits is non-existent. Al-
though fuel gauges do not have control over the supply of electricity, unlike Power
Management Integrated Circuits (PMICs) (although they may be included in a
PMIC), there is reason to consider privacy risks, especially on platforms such
as phones and tablets, which can contain a substantial amount of personal in-
formation. This is because fuel gauges can expose particularly precise measure-
ments [3]. To mitigate these risks, it is essential to understand the possible attack
scenarios and the potential impact of an attack. One approach is to perform a
threat modeling exercise to identify potential attackers and their motivations,
as well as the potential vulnerabilities of the system. This can help inform the
selection of appropriate security controls, such as encryption and access controls,
to protect the system against unauthorized access or disclosure.

Contribution In this article, we focus on embedded systems featuring the
Android OS. We summarize the evolution of the access policy to hardware power
sensors and outline the consequences of an unsuitable policy. By demonstrating
that information about a PIN code can be recovered while it is being typed, we
show that concrete and actual risks exist. We also address the question of what
measures can be put in place to confront this security hazard. In Section 2, we
describe the security policy in Android regarding hardware sensors and the risks
it can create. In Section 3, we explain how we managed to exploit these risks. In
Section 4, we discuss the implications of our findings. Finally, in Section 5, we
provide closing remarks on the importance of addressing these security risks in
embedded systems.

2 Risk analysis

2.1 Interactions between systems and their fuel gauge

The BatteryManager system service has existed since the early days of Android.
At the beginning, it only allowed to know the status of the battery regard-
ing its health (GOOD, OVERHEAT, DEAD, OVER_VOLTAGE...) or its use (CHARGING,
DISCHARGING, FULL...), as well as, if applicable, the charging source (USB or AC).
It has been expanded over time, until in version 5.0 (called Lollipop), constants
were added to form queries that can be redirected to a fuel gauge4. These in-
clude CURRENT_NOW to obtain the instantaneous current entering or leaving the
4 See: https://android.googlesource.com/platform/frameworks/base/+/refs/
heads/lollipop-release/core/java/android/os/BatteryManager.java

6 V. Giraud and D. Naccache

battery in microamps, CAPACITY for the remaining capacity in percentage, and
ENERGY_COUNTER for the remaining energy in nanowatt-hours.

Technically, any application running on an Android system can access the
BatteryManager service and request any of the available attributes during its
execution. The information in question is retrieved by probing the lower ab-
straction layers and, possibly, by consulting the fuel gauge. As a first step, we
investigated whether any controls were in place in any of the layers of the sys-
tem. We found that the SELinux configuration did not enforce any restrictions,
although it could have. Other layers that are prone to this type of moderation
include the Android framework in Java or the ART virtual machine, but no
such measures were found here either. As expected, the native executables and
libraries on the system did not block these requests either. After checking on ver-
sion 12 and earlier, we can confirm that Android does not block these requests,
regardless of the client application or the requested attribute.

This can already be a problem for the end-user, since he can’t object to the
sharing of power data. When an application puts in place the technical means
to retrieve it, even if for legitimate purposes such as energy saving, one can then
question the real use that is made of it. The company Uber, which was the target
of such suspicions in 2016, had to publicly deny this kind of exploitation5.

Incidentally, we should also note that some web browsers allow the Javascript
code delivered by some sites to consult the status of the battery and its charge,
via an interface of the same name, BatteryManager. The Javascript engine then
transmits the request following the same procedure as any other application.

Another aspect that requires special attention is the ability to capture these
measurements at any time, including when other applications are in use, or
when the phone is in sleep mode. Since Android 9 (known as Pie), there is a
FOREGROUND_SERVICE permission6, required by the activity manager when an
application requests to run a task normally in the background. Here too, this
one is granted without any request from the user. However, to obtain it, you
must have a notification in the list dedicated to this purpose in the system’s
graphical interface. There are now many applications that require a permanent
notification, so as not to be sacrificed by the battery saver, or to be able to receive
communications directly without going through the Google services. This could
be a case of spoofing, where an application that is supposed to be for chatting
or playing a video game is actually probing the fuel gauge in the background.

The next consideration is how often the fuel gauge can be checked. From An-
droid 12 onwards, the HIGH_SAMPLING_RATE_SENSORS permission has appeared
in the Java framework7. This permission is intended to limit scans above 200 Hz.
5 See: https://www.forbes.com/sites/amitchowdhry/2016/05/25/uber-low-
battery/

6 See: https://android.googlesource.com/platform/frameworks/base/+/
refs/heads/pie-release/services/core/java/com/android/server/am/
ActiveServices.java

7 See: https://android.googlesource.com/platform/frameworks/base/+/refs/
heads/android12-release/core/java/android/hardware/SystemSensorManager.
java

Breaking Android-based isolation with fuel gauges 7

However, since it is a normal permission, it can be requested without visual warn-
ing to the user. Moreover, it does not concern fuel gauges anyway, as shown in
the extract in Listing 1.2. In versions prior to 12, this measure does not exist.

Listing 1.2: Extract of Android’s system sensor manager since version 12.
/∗∗
∗ Checks if a sensor should be capped according to
∗ HIGH_SAMPLING_RATE_SENSORS permission.
∗
∗ This needs to be kept in sync with the list defined on the native side
∗ in frameworks/native/ services / sensorservice /SensorService .cpp
∗/
private boolean isSensorInCappedSet(int sensorType) {

return (sensorType == Sensor.TYPE_ACCELEROMETER
|| sensorType == Sensor.TYPE_ACCELEROMETER_UNCALIBRATED
|| sensorType == Sensor.TYPE_GYROSCOPE
|| sensorType == Sensor.TYPE_GYROSCOPE_UNCALIBRATED
|| sensorType == Sensor.TYPE_MAGNETIC_FIELD
|| sensorType == Sensor.TYPE_MAGNETIC_FIELD_UNCALIBRATED);

}

In practice, we see that while Android does indeed transmit measurement
requests as quickly as it can, many consecutive readings return the same value.
The explanation lies in the design of the fuel gauges themselves: for each met-
ric, they contain a physical register that is updated with a certain frequency. If
nothing (except the limitations of the serial link) prevents you from scanning as
fast as you want, the data read will be limited by this frequency, which varies
with the model of integrated circuit. On the market, one can find refreshments
around 4 and 10 Hz, which disqualifies, among others, attacks aiming at the
execution of cryptographic code: the attack presented in [8] requires, for ex-
ample, measurements at the microsecond scale. These frequencies nevertheless
leave malicious exploitations on human speed uses within reach. It should also
be noted that even if the HIGH_SAMPLING_RATE_SENSORS permission mentioned
above were applied to fuel gauges, it would still be useless due to this inherent
limitation of the hardware.

2.2 State of the art and its applicability to fuel gauges

The most judicious category of attack in this context is the side channel attacks.
They rely on exploiting information from the operation of a system, rather than
a design, specification or protocol flaws. A founding example is the recovery of
secrets for Diffie-Hellman, RSA or DSS based on execution times [8]. For per-
sonal identification codes, an attack based on electromagnetic emissions during

8 V. Giraud and D. Naccache

sequence verification is presented in [9]. On the targeted platforms, fuel gauges
offer the potential to exploit a major side channel, real-time current consump-
tion, without requiring any additional equipment.

PIN entry on phones has already been targeted in several ways. In [4] and
[11], it is spied on Android 2, via motion or rotation sensors, and requires training
data. This technique will be pushed in [2], where the authors merge readings on
several different sensors of various natures, still requiring training, presumably
on Android 5 or 6. [6] explains a spying technique applicable when the phone is
charging through its USB port: specific sensing hardware, plugged into the line,
intercepts the current and infers the position of touches using a convolutional
neural network, also trained but only by the attacker.

By exploiting fuel gauges, we aim at proposing a PIN code attack that does
not require training or scanning of a wide variety of onboard sensors.

2.3 Identified risks

Regarding the state of the art and fuel gauges applications, three risks are iden-
tified:

– The first one is a privacy risk. An attacker can log to the second events such
as the use or not of the phone, the activation or deactivation of wireless
connectivity, the reception or transmission of communication, etc.

– A second one due to the creation of a hidden communication channel on the
platform: the real-time consumption tracking. We have seen that it would
be accessible in reading mode by all applications. We must also consider
that all the actors have a de facto inalienable right to write on it, since each
one can, by its execution, cause a lesser or additional consumption. Thus,
for example, an application A, having access to sensitive data but not to
the network, could transmit them, by means of certain signal modulation
techniques, to an application B, having access to the network but not to the
sensitive contents.

– A third one, particularly aimed at implementations of secure and sensitive
solutions: on many fuel gauges, the refresh rate, although low, is of the same
order of magnitude as human interactions. One can then fear the harvesting
of information during the entry of a secret data.

In the following, we will focus on the latter, in order to retrieve a PIN, intended
for another process.

3 Sensitive data recovery through fuel gauges

3.1 Testing tools

To demonstrate this attack, we focused on exploiting Android versions between
9 and 12. Targeting earlier versions should not pose any obstacle except for the

Breaking Android-based isolation with fuel gauges 9

lack of standard fuel gauge support before version 5 (Lollipop). Our testing was
conducted on devices in Google’s Nexus and Pixel lines, both with and without
a USB cable connected to the platform. When the fuel gauge is not connected
to a power source, it returns negative values for the instantaneous current con-
sumption as energy is being drained from the battery. However, when a charging
cable is connected, the charging current is stable enough not to question the at-
tack, and positive values are obtained if the system consumes less energy than
it absorbs via the cable. In our testing, we were able to prototype the attack
successfully. To facilitate our temporal attack, we developed a simple target ap-
plication, as shown in Figure 3, which prompts the user to enter a PIN code
using a virtual numeric keypad. The entry must be confirmed using a validation
key located in a known location on the screen, thus creating a time lapse be-
tween each press that can be exploited by the attacker. Additionally, the keypad
is not perfectly square, with varying distances between certain keys, which can
also slightly work in favor of the attacker. It is worth noting that most phones
come with a factory configuration that includes a vibration feedback when a key
is pressed, which requires substantial energy to activate, representing an aggra-
vating factor in this situation. Overall, our prototype attack demonstrates the
vulnerability of Android devices to temporal attacks, which can be exploited by
an attacker with the knowledge and resources to do so.

Fig. 3: Screenshot of the target application.

We also developed an Android application dedicated to the attack. The ap-
plication includes an Android service that can scan the fuel gauge without inter-

10 V. Giraud and D. Naccache

fering with the user interface and can do so even when the phone is in standby
mode or the user switches to another app. As energy readings accumulate, they
are stored in memory and can be accessed later to avoid lowering the signal-
to-noise ratio that could occur with real-time extraction via a wired or wireless
Android Debug Bridge (ADB) link. For the purposes of this demonstration, we
will display a graph directly showing the data collected from the fuel gauge.
The X-axis represents the number of measurements collected, and the Y-axis
indicates the instantaneous current consumption. It’s important to note that we
only rely on the instantaneous current consumption metric for this attack. Other
metrics such as voltage, temperature, or remaining charge are either not precise
enough or not representative of the instantaneous activity on the platform.

3.2 Exploitation

When setting up a timing-based attack, there are two main aspects to consider:
capturing the data and detecting significant events, and analyzing the data to
reduce the secret’s space. The first aspect can be based on various metrics or
physical phenomena, including the one we introduced in this article. The second
aspect relies on methods that should be applicable regardless of the technique
used to capture the data. These methods are aimed at analyzing the data to re-
duce the space of possible secrets that could have generated the captured timing
data. By applying these methods, an attacker can gain insights into the possible
values of the secret and thus increase their chances of successfully cracking it.
Overall, timing-based attacks are a powerful tool in an attacker’s arsenal, and it
is essential to consider both the capture and analysis of the data to successfully
execute such an attack.

Temporal position detection Figure 4a illustrates a sequence where we have
our finger resting on the touchscreen panel between the 12,500 and 22,500 mea-
surements, counted on the x-axis. The increased downward variance in this region
indicates that the fuel gauges are well able to detect the delta in power consump-
tion of a phone or tablet when touching the screen, even without vibration. Using
a device with a cracked but functional touchscreen does not change this result.
The curve decreases when touching because the consumption increases during
these moments (there is more current coming out of the battery). While we can
guess that this consumption differential is due to the physical phenomenon at
play on capacitive technologies, we can also assume that a software processing
necessary to manage this input mode is also responsible. On the Figure 4b, we
can see a typical sequence corresponding to a 4-digit code entry, with validation.
The fact that the vibration is triggered at each press makes the reading obvious:
the peaks corresponding to each entry are clearly visible to the naked eye. In
this case, it is not necessary to deploy signal analysis techniques to conduct the
attack. However, the low update rate of the fuel gauges makes us lack precision
to conduct a temporal attack. The capture in Figure 4c illustrates the same
dataset as in the middle one, but where we have magnified the first two peaks.

Breaking Android-based isolation with fuel gauges 11

(a) (b) (c)

Fig. 4: Screenshots of the application used for the attack.

The three curves concentrated at the bottom of the screen correspond to the
gyroscopic readings, which are also withdrawn. These can allow us to refine the
temporal contact points: under an energy peak, we can retain the points where
the derivatives of the three axes of rotation reach zero at the same instant after
a variation.

Temporal attack Once the delays between the inputs have been precisely
identified, we can carry out a temporal attack on the code.

On our side, we have developed a recursive and deterministic algorithm,
which, depending from the time lapses provided, unrolls the tree of the possible
codes starting from the end, as illustrated in listing 1.3 with values obtained
from captures such as the one in 4b. It works in reverse order, since we know
the user is required to confirm the PIN by pressing the validation key. This way,
by observing the delays, we can infer on the most likely digits introduced right
before, and so on. Thus, in the tree of most possible codes, the validation key,
represented with the number 10, is the root, and the first digit of each possible
PIN are the end of the branches. This method is conceptually close to the one
presented in [5].

The state of the art shows that temporal analysis can provide convincing
results by exploiting several possible techniques, often applied to beep tones
emitted by physical pin pads. In [7], the possible PIN codes are extracted with
the help of Hidden Markov Models (HMMs). However in [10], the use of machine

12 V. Giraud and D. Naccache

Listing 1.3: Example output from the developed deterministic algorithm. The
10-key represents the validation one, pressed at the end of the sequence. The
proposed sequences are in reverse.
(arbre ’(1.74 2 2.01 2.52) (cons ’(10) ’()) 0)
=> ((((((10 6 8 2 3) (10 6 8 2 1))) (((10 6 2 8 9) (10 6 2 8 7))))))

learning techniques was highlighted. In all cases, quantifying the rate of success
is not easy, since it depends a lot on the PIN itself, mostly on the variability in
the distances between the digits composing it.

Finally, a further reduction in the remaining code space can be achieved
by making a kinematic study of the gyroscopic readings, which are harvested
anyway to refine the peaks. For example, the slight rotation of the device needed
to press the 1 key is different from the one corresponding to the pressing of the
0 key: this bias can help to choose the most probable first digit.

4 Discussion

In this work, we have demonstrated the concrete existence of a privacy risk on
many Android-based platforms. It has been illustrated with an example involv-
ing the recovery of personal code, but this danger should not be neglected in
general, including activity spying and the establishment and exploitation of a
hidden communication channel. If a software environment is intended to host
executable content from various third-party actors, then the system designer
should pay particular attention to the integration of a fuel gauge. Delegation of
responsibility for energy management may indeed bring additional security con-
siderations. Similarly, while this article has focused on the case of Android due
to its widespread presence today, the risk presented is not specific to this OS.
There are several devices on the market that embed a fuel gauge in different en-
vironments. One example is the Nintendo Switch, which is based on a FreeBSD
kernel and has such an integrated circuit as part of its battery management. This
danger can easily be taken into account when one controls the platform and its
OS, since in this case it is sufficient to act on the security policy governing access
to such components. This approach has been applied in [1] to regulate access to
sensors in general, by means of modifications to the native system libraries, and
to the applications before their installation. However, mitigation is much more
complex when one is an actor with access only to the application layer, such as
a third-party developer. Securing such a sensitive process is then a new task,
where one can no longer rely on inter-application isolation. Moreover, thwarting
auxiliary channels attacks is particularly complex when working with interme-
diate code generated from Java or Kotlin sources, as it is mostly the case on
Android. This work is currently under study.

Breaking Android-based isolation with fuel gauges 13

5 Conclusion

In this article, we have seen that some autonomous devices embed a fuel gauge
and that this, due to its capabilities, can imply privacy risks. We have shown
that their inclusion in the Android system is vulnerable to this, by setting up
one of the possible exploits, namely secret spying. Since this danger contradicts
the guarantee of isolation normally provided by the environment, it has serious
consequences on the production of sensitive applications. It is therefore necessary
for third-party developers to adopt measures and precautions. These solutions
are currently being studied.

Acknowledgments

The authors would like to thank Guillaume Bouffard, for his creative contribu-
tions and support throughout this work.

References

1. Bai, X., Yin, J., Wang, Y.P.: Sensor guardian: prevent privacy inference on android
sensors (2017). https://doi.org/10.1186/s13635-017-0061-8

2. Berend, D., Jungk, B., Bhasin, S.: There goes your PIN: Exploiting smartphone
sensor fusion under single and cross user setting (2017), https://eprint.iacr.
org/2017/1169

3. Bokhari, M.A., Xia, Y., Zhou, B., Alexander, B., Wagner, M.:
Validation of internal meters of mobile android devices (2017).
https://doi.org/10.48550/arXiv.1701.07095, http://arxiv.org/abs/1701.07095

4. Cai, L., Chen, H.: TouchLogger: Inferring keystrokes on touch screen from smart-
phone motion (2011)

5. Cardaioli, M., Conti, M., Balagani, K., Gasti, P.: Your PIN sounds
good! on the feasibility of PIN inference through audio leakage (2019).
https://doi.org/10.48550/arXiv.1905.08742, number: arXiv:1905.08742

6. Cronin, P., Gao, X., Yang, C., Wang, H.: Charger-surfing: Exploiting a power line
side-channel for smartphone information leakage (2021)

7. Foo Kune, D., Kim, Y.: Timing attacks on PIN input devices. In: Proceedings of
the 17th ACM conference on Computer and communications security. Association
for Computing Machinery (2010). https://doi.org/10.1145/1866307.1866395

8. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In: Advances in Cryptology — CRYPTO ’96 (1996)

9. Le Bouder, H., Barry, T., Couroussé, D., Lanet, J.L., Lashermes, R.: A Template
Attack Against VERIFY PIN Algorithms. In: SECRYPT 2016 (2016), https:
//hal.inria.fr/hal-01383143

10. Panda, S., Liu, Y., Hancke, G.P., Qureshi, U.M.: Behavioral acoustic emanations:
Attack and verification of PIN entry using keypress sounds (2020)

11. Xu, Z., Bai, K., Zhu, S.: TapLogger: inferring user inputs on smartphone touch-
screens using on-board motion sensors. In: Proceedings of the fifth ACM confer-
ence on Security and Privacy in Wireless and Mobile Networks. WISEC ’12 (2012).
https://doi.org/10.1145/2185448.2185465

