
InnovR 2017
4-EII INSA Rennes

Low level optimizations of the Future Video
Coding inverse transforms
Vincent GIRAUD1*

Abstract
The Video Coding Experts Group (VCEG) and the Moving Picture Experts Group (MPEG) are preparing a
new video standard called Future Video Coding (FVC), to respond to the growing demands in terms of video
consumption. Its goal is to provide the same subjective video quality as H.265/MPEG-4 HEVC, with a bitrate
reduced by 50%. One of the new considered features is the Adaptive Multiple Transform (AMT) : it replaces
the classic Discrete Cosine Transform (DCT) by a set of different transformations. For each Transform Block
(TB), the transforms that will provide the best compression are chosen. This enhancement comes at the cost
of a certain complexity. This paper provides low level, spatially parallel optimizations that work on all the
considered transforms during video decoding.

Keywords
Optimization — Future Video Coding (FVC) — Inverse transform design — Prediction residues — Single
Instruction on Multiple Data (SIMD)

1Department of Electronics and Industrial Informatics, INSA Rennes, Rennes, France
*Corresponding author: vincent@giraud.site

Contents

Introduction 1

0.1 Context . 1
0.2 Contribution . 1
0.3 Plan of the paper . 2

1 Related works 2

1.1 H.265/MPEG-4 HEVC 2
1.2 The Adaptive Multiple Transform (AMT) 2
1.3 Single Instruction Multiple Data computing . . 2

2 Proposed solutions 2

2.1 Exploitation of spatial parallelism 2
2.2 Customized treatment for constant residues . 4

3 Results and discussion 5

3.1 Technical configuration 5
3.2 Results . 5

4 Conclusion 5

References 5

Introduction
0.1 Context
During the 2000s, digital video mediums replaced the ana-
log ones. Various video standards have succeeded one an-
other since then, in order to provide better bitrate require-
ments for the same subjective quality. H.265/MPEG-4 High
Efficiency Video Coding (HEVC) became the most popular
one after its release in 2013. However, video consumption
is changing to become more mobile, and to require greater
spatial resolutions : 3840× 2160 (4K) and 7680× 4320

(8K) are becoming accessible to the general public. The
High Dynamic Range (HDR) technology will need higher
bit depths too.

In order to provide better compression, all current stan-
dards predict video frames via interpicture and intrapicture
predictions. Each frame is divided into smaller blocks,
which are deduced from the rest of the frame or from previ-
ous or futur pictures. As these techniques may give incorrect
results, it is necessary to correct them by adding residual
data, which is the difference between the input data and the
result of the prediction. To avoid having significant amounts
of residues in the end video files, they are being processed
through mathematical transformations. In H.265/MPEG-4
HEVC, the Discrete Cosine Transform (DCT) is used[1] :
it allows good compression with great energy compaction,
and features numerous practical mathematical properties,
like symmetry and having smaller transforms matrices con-
tained in the bigger ones[2]. Most of the processed residual
data consists of a two-dimensional vector with values con-
centrated in the lower frequencies.

0.2 Contribution
The Video Coding Experts Group (VCEG) and the Moving
Picture Experts Group (MPEG), as the Joint Video Experts
Team (JVET), are developing a video standard called Fu-
ture Video Coding (FVC) to respond to the new needs in
terms of video consumption. Its goal is to achieve a 50%
reduction in bitrate for the same subjective quality. The
DCT may not be the only transformation used, and thus it is
necessary to develop optimizations other than the ones spe-
cific to it. The goal of this paper is to provide generic low
level optimizations of inverse transforms. Mathematically
speaking, forward and inverse transforms are applied in the

Low level optimizations of the Future Video Coding inverse transforms — 2/6

same way — meaning these techniques could be applied
to any forward transform; however, only inverse transform
matrices are precisely defined by video standards to avoid
divergence because of rounding effects[3]. These defini-
tions offer further opportunities that will be analyzed. Also,
since H.265/MPEG-4 HEVC introduced a wide dynamic
variation in the sizes of Transform Blocks (TBs) — now
ranging from 4×4 to 32×32[4], these optimizations need
to be potentially applicable to multiple inverse transform
sizes. As videos are becoming more and more heavy, the
main risk is to not be able to decode residues in real time,
therefore, not being able to play a video in its original speed.

0.3 Plan of the paper
This paper is organized as follows. Section 1 exposes cur-
rent means implemented to improve residual data process-
ing. In section 2, several ways of refinement are proposed.
Section 3 presents the effects of such techniques. Finally,
conclusions are given in section 4.

1. Related works
1.1 H.265/MPEG-4 HEVC
In H.265/MPEG-4 HEVC, which is VCEG and MPEG’s last
video standard, the DCT is the sole application exploited
for doing two-dimensional transformations — with the ex-
ception of a Discrete Sine Transform (DST) used for 4×4
intra blocks[1]. Thus, many specialized optimizations were
elaborated for this particular operation. Hardware imple-
mentations have been made, notably by using spare matrix
decompositions[5]. Algorithms using its specific properties
have been developed[2]. These improvements helped the
standard grow as it pushed efficiency further.

1.2 The Adaptive Multiple Transform (AMT)
In order to improve compression, a new approach to residues
processing is considered in the FVC standard. Rather than
using a single transform, multiple ones could be used. Every
time a residual block needs to be processed, a FVC encoder
would have to select between a set of transforms; with the
objective of reducing both correlation and distortion. In the
case of a single fixed transform, the DCT is confirmed as
the optimal choice[6]; but the exploitation of a set of dif-
ferent transforms has been proven to be 5% more efficient
for the same objective quality using the Bjøntegaard-Delta
Bit-Rate (BD-BR) method[7]. This test has been made on
the Joint Exploration Model (JEM) software, proposed by
the JVET to measure new video tools’ relevancy, with the
transforms specified in figure 1. This dynamic way of pro-
cessing residual data has been called the Adaptive Multiple
Transform (AMT).

For each TB, the best transform to use is chosen by
doing Rate–Distortion Optimization (RDO) which can rely
on measures like the Peak Signal to Noise Ratio (PSNR)
— therefore on the mean squared error —, as does the BD-
BR method[9]. It should be noted that these indicators
are purely objective and do not capture in any way the
subjective fidelity. When choosing for a transform, there is
the possibility of not applying the same for both dimensions,
but instead using one in the horizontal direction, and another

DCT-II
Ti(j) = ω0×

√
2
N × cos(π×i×(2 j+1)

2N)

where ω0 =

{√
2
N if i = 0

1 if i 6= 0

DCT-V

Ti(j) = ω0×ω1×
√

2
2N−1 × cos(2×π×i× j

2N−1)

where ω0 =

{√
2
N if i = 0

1 if i 6= 0

and ω1 =

{√
2
N if j = 0

1 if j 6= 0

DCT-VIII Ti(j) =
√

4
2N+1 × cos(π×t(2i+1)×(2 j+1)

4N+2)

DST-I Ti(j) =
√

2
N+1 × sin(π×(i+1)×(j+1)

N+1)

DST-VII Ti(j) =
√

4
2N+1 × sin(π×(2i+1)×(j+1)

2N+1)

Figure 1. The five trigonometric transforms used in the
JEM software to test the relevancy of the AMT[8]. The
classic DCT is defined as the DCT-II. N represents the size
of the vectors.

one vertically. All these new opportunities also come with
its share of complexity.

1.3 Single Instruction Multiple Data computing
A Single Instruction on Multiple Data (SIMD) architecture
is a design that allows for spatial parallelism in the treat-
ment of data. In classic computing, an instruction results
in one value, usually after processing one or two. With
a SIMD architecture however, an instruction can compute
with vectors of data. Arithmetic operations are done ele-
ment to element. Vector-processing is especially efficient
with repetitive procedures.

Such designs have been implemented in mainstream
processors since the late 1990s, in the form of instruction
set extensions. On x86-based hardware, they notably in-
clude MultiMedia eXtensions (MMX), Streaming SIMD
Extensions (SSE), 3DNow!, and Advanced Vector Exten-
sions (AVX). These do not work with the same vector’s size,
ranging from 64 bits to 256 bits. However, there is not a
single fixed manipulated values’ bit depth : the programmer
can choose between a few elements’ possible sizes. In order
to not restrict their use to assembly writers, some extensions
come with a library of C functions that provide access to
the instructions; they are called intrinsics.

2. Proposed solutions

Against this background, it is important to develop optimiza-
tions which work independently from the applied transform.
The proposed solutions are FVC-friendly, as they can deal
with all the mathematical applications integrated in it. It
should be recalled that they all are linear maps, and thus can
each be represented by a matrix, and executed via a matrix
multiplication.

2.1 Exploitation of spatial parallelism
As mentioned earlier, SIMD processing is beneficial for
repetitive tasks. A matrix multiplication can be presumed

Low level optimizations of the Future Video Coding inverse transforms — 3/6

as one : let m be the size of two square matrices. Multi-
plying them requires m3 multiplications and m2× (m−1)
additions, for a total of m2× (2m−1) operations. The im-
plementation of parallel computing for the AMT is thus
considered here. The SSE is chosen because of its wide
implantation — it is available on all modern processors. It
provides calculation on 128-bit vectors, with the elements’
size ranging from 8 to 64 bits. In the case of residual data
processing, using a bit depth of 32 bits — giving vectors
containing 4 variables — is justified by the need to store
large intermediate values. By convention, little-endian will
be used in this paper when representing a vector.

Let B be the 4×4 residual block that needs to be com-
pressed, Dc the matrix for the column transform and Dr
the matrix for the row one. Applying a two-dimensional
transformation is done by computing (DcB)DrT , that is :

Dc0 Dc1 Dc2 Dc3
Dc4 Dc5 Dc6 Dc7
Dc8 Dc9 Dc10 Dc11
Dc12 Dc13 Dc14 Dc15

×

B0 B1 B2 B3
B4 B5 B6 B7
B8 B9 B10 B11
B12 B13 B14 B15

×

Dr0 Dr4 Dr8 Dr12
Dr1 Dr5 Dr9 Dr13
Dr2 Dr6 Dr10 Dr14
Dr3 Dr7 Dr11 Dr15

A first algorithm is developed where the residues are
loaded into vectors of size 4, and where for each matrix
multiplication, a line is computed by accumulating the prod-
ucts of a line from the second matrix and a broadcast of the
corresponding coefficient from the first one, as shown in
figure 2.

Figure 2. A first way of computing a line in a matrix
multiplication.

With this algorithm, the two-dimensional transform
needs 32 pmaddwd and 32 paddd instructions. The many
loading instructions dedicated to the coefficient broadcasts
can be disadvantageous. Also, it should be noted that the
pmaddwd instruction is not fully exploited here : every
time it is used, a multiplication and an addition are wasted;
this is the case because all values need only 16 bits but
are contained in 32 bits, thus the upper bits of each 32-bit
elements are zeros. On the other hand, this procedure re-
quires almost no vector reorganization : for both matrix

multiplications, the coefficients from the first matrix are
simply broadcasted one by one, and the values from the
second one are loaded, then unpacked with punpcklwd
and punpckhwd instructions to make them fit in 32-bit
elements.

A second algorithm is considered. In this one, vectors
are loaded only before matrix multiplications, but their el-
ements get heavily reorganized. Indeed, in this method,
the scalar product is used, thus the second matrix’s vectors
need to contain values along the columns; however they
are loaded along the rows. To change this, four temporary
vectors are generated by doing four dual unpacking with
zeros — by using punpcklwd and punpckhwd —, as
shown in figure 3.

Figure 3. An illustration of a method for obtaining a vector
along the columns instead of the rows. To get the second
one, the exact same technique can be reapplied, but the two
input vectors need to be shifted 4 bytes to the right.

The first one is obtained by executing a low then another
low unpack on the first input vector. The second one by
doing a high then a low unpack on the first input vector.
The third one by executing a low then another low unpack
on the second input vector. The fourth one by doing a high
then a low unpack on the second input vector. Once this is
done, the four temporary vectors have to be merged : the
second, third, and fourth vectors will be shifted 2, 4, and
6 bytes to the left respectively with pslldq instructions,
and all of them will be fused together with paddw instruc-
tions. This whole procedure works directly when looking
for the first output vector, but in order to get the second one,
a right shift of 4 bytes has to be done on both input vec-
tors at the beginning with the psrldq instructions. Once
the rearrangement is finished, the actual computation can
start. The left matrix’s coefficients are loaded in the form
of registers storing two duplicates of their corresponding
line — this does not need reorganization as before, because
the inverse transform matrices are defined and stored in the
program; thus any manipulation can be done directly in the
source code. Those vectors will be multiplied and added
to the recently made ones with pmaddwd and phaddd
instructions, as seen in figure 4.

Low level optimizations of the Future Video Coding inverse transforms — 4/6

Figure 4. A second way of computing a line in a matrix
multiplication. The register in the middle receives the
output vector containing a line of the resulting matrix.

After this first transformation, the residual block still
needs a second one. But this time it will act as the left
matrix of this product; thus its vectors need a reorganization
to adopt the same duplicated form that the first transform
matrix had to adopt, as represented in figure 4. Each such
vector is created by using a movlhps or a movhlps in-
struction on the two same packings — with packssdw
— of either the two first lines or the two last lines. As an
example, the second vector is made by using a movhlps
instruction on the two same packings of the two first lines.

In total, this algorithm required only 16 pmaddwd and 8
phaddd instructions for the whole two-dimensional trans-
form. However, this comes at the cost of heavy rearrange-
ments of elements before matrix multiplications. Neverthe-
less, the pmaddwd instruction is fully exploited here.

Finally, a third method is proposed, really similar to the
second one. The only change is the reorganization before
the first matrix multiplication. As shown in figure 5, only
two temporary vectors are required here. They are each
obtained by executing a punpcklwd or a punpckhwd
instruction on both inputs. Then, to get the output vectors,
the exact same operation has to be applied on the temporary
vectors. This slightly different way of proceeding might
possibly accelerate the transform.

In every algorithm, between and after the two matrix
multiplications, all coefficients in the residual block are
shifted to the right with psrad instructions, in order to
have them fit in the desired bit depth — by 6 and 13 bits
respectively, for 8-bit residues[2]. But before doing a n-bit
shift, the n−1 bits are always incremented by one with a
paddd instruction : this provides rounding, as after the
shift, the first bits — or the n ones — are incremented
only if a rounding up is necessary. On a different matter,
it should be noted that these optimizations can be used
in the context of matrices bigger than 4× 4 : 8× 8, 16×
16, and 32× 32 matrix calculations will have to apply a
divide and rule algorithm to obtain their product from a
4× 4 multiplication. Also, regarding the instruction set
extensions, it can be shown that the first presented method

Figure 5. Illustration of another method for making vectors
along the columns instead of the rows.

only need instructions from SSE and SSE2 — unlike the
others, which need instructions from SSE3, too. Even if the
first algorithm turns out to be less efficient, it could still be
implemented as a mean to support SIMD optimizations on
old systems; particularly on those equipped with processors
from between 2001 and 2004.

2.2 Customized treatment for constant residues
During video coding, a significant number of TBs end up
being constant, that is, all their values are equals. These
blocks only contain a direct signal that cannot be defined by
frequencies. When encoded using a classic DCT for exam-
ple, the result is a matrix with only one non-zero coefficient :
the top left one, which represent the DC signal. During the
decoding, the TB will regain its initial, constant form. If no
special matrix product is used, many multiplications with
zeros will be done. The goal here is to avoid this, and in-
stead generate an output block by only processing the DC
value. The procedure is illustrated in figure 6. The only non-
zero coefficient of the TB is broadcasted in the four 32-bit
elements of a register. The latter is then multiplied with the
first column of the column transform matrix, and the first
row of the row transform matrix. It should be recalled that
since the Dr matrix is transposed in the two-dimensional
transformation formula, the coefficients contained in the
first row are not Dr0, Dr1, Dr2 and Dr3; but Dr0, Dr4, Dr8
and Dr12.

Figure 6. An optimized way for applying an inverse
transform on a constant TB.

The resulting vector will contain the same four values.
They have to be shifted to the right by 19 bits if the video’s
bit depth is 8, for fitting purposes as explained earlier; while
also taking care of the rounding. All that then remains

Low level optimizations of the Future Video Coding inverse transforms — 5/6

is to pack this vector with itself by using the packssdw
instruction : this will convert the 32-bit elements register
to a 16-bit elements one, and duplicate the values in it. In
the end, this method does not need reorganization, and uses
only 2 pmulld instructions, which is a lot less than with
the whole two-dimensional transform process.

3. Results and discussion
3.1 Technical configuration
To test the algorithms, a computer running GNU/Linux
will be used. The kernel version is 4.9.92-1. The sys-
tem’s processor is an Intel Core i5-2410M working at 2,30
GHz. The testing software is not multithreaded, it runs
on a single core. To measure the time taken to process,
the time command is used, and the registered value is
the user time. The software has been compiled with GNU
Compiler Collection (GCC), using the -O0 parameter to
avoid unwanted behaviors, and -msse, -msse2, -msse3,
-msse4, -msse4.1, -msse4.2 to enable SSE instruc-
tions.

3.2 Results
Each method is executed on a different number of inverse
transformations. To better put in context, an algorithm
with absolutely no optimizations is also tested. It computes
matrix multiplications by following the classic triple-loop
pattern : one loop to scan the lines, another loop for se-
lecting a value inside the selected line, and a third loop for
executing the scalar product. It therefore does not benefit
from spatial parallelism. Figure 7 presents the results of the
experience.

104 105 106 107 108 109
100

101

102

103

104

105

106

Number of inverse transforms to process

Ti
m

e
re

qu
ir

ed
,i

n
m

ill
is

ec
on

ds

No optimizations
First algorithm

Second algorithm
Third algorithm

Constant residues algorithm

Figure 7. Times required for multiple 4×4 inverse
transforms, depending on different optimizations. Both
axis are logarithmic.

The non-optimized method is always and by far the
slowest : this indicates that the use of SIMD instructions is
effective. While the third algorithm is slightly faster than
the second, they both are much more efficient than the first.
This difference may be explained by the incomplete usage
of pmaddwd instructions by the first method. Also, the
third way might be a a little more advanced than the second
one thanks to its more compact reorganization of vectors.
The performance of the constant residues algorithm proves
that it is definitely the method to choose when dealing with
a constant TB. Figure 8 shows the average gain for each
way of computing.

First algorithm 224 %
Second algorithm 601 %
Third algorithm 717 %

Constant residues algorithm 2588 %

Figure 8. Average gains in speed in comparison to the
non-optimized method. These percentages are ratios :
100 % means it performed with neither improvement nor
loss.

4. Conclusion
In order to achieve the goals set by the JVET for the FVC
standard, it is important to make the most out of every oppor-
tunity in terms of compression. The 5 % gain provided by
the AMT is precious, but it implies a more complex video
coding or decoding. To address this problem, general opti-
mizations have been provided in this paper. They allow for
a faster processing of residues in videos. By relying on SSE,
these improvements can be applied on a large number of
systems, as this instruction set extension is widely installed
in common computers. Spatial parallelism has proven to be
much more efficient than normal computing, especially for
constant residual data. The use of AVX instructions can be
suggested to push efficiency even further, even though the
considered transforms for the AMT will, without a doubt,
offer many opportunities.

References
[1] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand.

Overview of the high efficiency video coding (hevc)
standard. IEEE Transactions on Circuits and Systems
for Video Technology, 22(12):1649–1668, Dec 2012.

[2] M. Budagavi, A. Fuldseth, G. Bjøntegaard, V. Sze, and
M. Sadafale. Core transform design in the high effi-
ciency video coding (hevc) standard. IEEE Journal of
Selected Topics in Signal Processing, 7(6):1029–1041,
Dec 2013.

[3] F. Loras and J. Fournier. H.264/mpeg-4 avc, un nou-
veau standard de compression vidéo. Technical report,
CORESA and France Télecom R&D, 2003.

[4] T. Nguyen, P. Helle, M. Winken, B. Bross, D. Marpe,
H. Schwarz, and T. Wiegand. Transform coding tech-
niques in hevc. IEEE Journal of Selected Topics in
Signal Processing, 7(6):978–989, Dec 2013.

Low level optimizations of the Future Video Coding inverse transforms — 6/6

[5] Chia-Wei Chang, Hao-Fan Hsu, Chih-Peng Fan, Chung-
Bin Wu, and Robert Chen-Hao Chang. A fast algorithm-
based cost-effective and hardware-efficient unified ar-
chitecture design of 4×4, 8×8, 16×16, and 32×32
inverse core transforms for hevc. Journal of Signal
Processing Systems, 82(1):69–89, Jan 2016.

[6] Pierrick Philippe, Thibaud Biatek, and Victorien Lorcy.
Improvement of hevc inter-coding mode using multiple
transforms, Aug 2017.

[7] Naty Sidaty, Wassim Hamidouche, Olivier Déforges,
and Pierrick Philippe. Compression efficiency of the
emerging video coding tools, Sep 2017.

[8] Ahmed Kammoun, Wassim Hamidouche, Fatma Bel-
ghith, Jean-François Nezan, and Nouri Masmoudi. A
unified 2d hardware architecture of the future video cod-
ing adaptive multiple transforms on soc platform. IEEE
Transactions on Consumer Electronics, 2018.

[9] Saurabh Puri, Sebastien Lasserre, and Patrick Le Cal-
let. Cnn-based transform index prediction in multiple
transforms framework to assist entropy coding, Aug
2017.

	Introduction
	Context
	Contribution
	Plan of the paper

	Related works
	H.265/MPEG-4 HEVC
	The Adaptive Multiple Transform (AMT)
	Single Instruction Multiple Data computing

	Proposed solutions
	Exploitation of spatial parallelism
	Customized treatment for constant residues

	Results and discussion
	Technical configuration
	Results

	Conclusion
	References

